Shortest Path [4]

Problem

Introduction

Write a program to find the weighted shortest distances from any vertex to a given source vertex in a digraph. If there is more than one minimum path from v to w, a path with the fewest number of edges is chosen. It is guaranteed that all the weights are positive and such a path is unique for any vertex.

Format of functions:

1
void ShortestDist( MGraph Graph, int dist[], int path[], Vertex S );

where MGraph is defined as the following:

1
2
3
4
5
6
7
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;
int Ne;
WeightType G[MaxVertexNum][MaxVertexNum];
};
typedef PtrToGNode MGraph;

The shortest distance from V to the source S is supposed to be stored in dist[V]. If V cannot be reached from S, store -1 instead. If W is the vertex being visited right before V along the shortest path from Sto V, then path[V]=W. If V cannot be reached from S, path[V]=-1, and we have path[S]=-1.

Sample program of judge:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include <stdio.h>
#include <stdlib.h>

typedef enum {false, true} bool;
#define INFINITY 1000000
#define MaxVertexNum 10 /* maximum number of vertices */
typedef int Vertex; /* vertices are numbered from 0 to MaxVertexNum-1 */
typedef int WeightType;

typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;
int Ne;
WeightType G[MaxVertexNum][MaxVertexNum];
};
typedef PtrToGNode MGraph;

MGraph ReadG(); /* details omitted */

void ShortestDist( MGraph Graph, int dist[], int path[], Vertex S );

int main()
{
int dist[MaxVertexNum], path[MaxVertexNum];
Vertex S, V;
MGraph G = ReadG();

scanf("%d", &S);
ShortestDist( G, dist, path, S );

for ( V=0; V<G->Nv; V++ )
printf("%d ", dist[V]);
printf("\n");
for ( V=0; V<G->Nv; V++ )
printf("%d ", path[V]);
printf("\n");

return 0;
}

/* Your function will be put here */

Sample Input (for the graph shown in the figure):

1
2
3
4
5
6
7
8
9
10
11
12
13
8 11
0 4 5
0 7 10
1 7 40
3 0 40
3 1 20
3 2 100
3 7 70
4 7 5
6 2 1
7 5 3
7 2 50
3

Sample Output:

1
2
40 20 100 0 45 53 -1 50 
3 3 3 -1 0 7 -1 0

Solution

AD Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
void ShortestDist(MGraph Graph, int dist[], int path[], Vertex S)
{
// 定义
int i;
int known[MaxVertexNum]; // 记录是否遍历的数组
int pathlength[MaxVertexNum]; // 记录路径长度的数组

// 初始化
for (i = 0; i < Graph->Nv; i++)
{
known[i] = 0;
// 由于函数外未定义dist[]与path[]所以在此初始化
dist[i] = Graph->G[S][i];
path[i] = S;
pathlength[i] = INFINITY;
}
// origin
path[S] = -1;
dist[S] = 0;
known[S] = 1;

while (1)
{
int min = INFINITY;
int v = -1;
// 寻找距离最小的点以及路径最短的点
// v = smallest unknown distence vertex
for (i = 0; i < Graph->Nv; i++)
{
if(known[i] == 0)
if (dist[i] < min)
{
min = dist[i];
v = i;
}

}
// 遍历结束未找到,跳出
if (v == -1)
break;

known[v] = 1;

// 遍历v连接点,若distv+weight更短则进行更新

for (i = 0; i < Graph->Nv; i++)
{
if (known[i] == 0 && dist[v] + Graph->G[v][i] < dist[i])
{
dist[i] = dist[v] + Graph->G[v][i];
path[i] = v;
}
}
}
// 按照题目需求,将不连结的vertex输出-1
for (i = 0; i < Graph->Nv; i++)
{
if (dist[i] == INFINITY)
{
dist[i] = -1;
path[i] = -1;
}
}
}